15 research outputs found

    PLAR: Prompt Learning for Action Recognition

    Full text link
    We present a new general learning approach, Prompt Learning for Action Recognition (PLAR), which leverages the strengths of prompt learning to guide the learning process. Our approach is designed to predict the action label by helping the models focus on the descriptions or instructions associated with actions in the input videos. Our formulation uses various prompts, including learnable prompts, auxiliary visual information, and large vision models to improve the recognition performance. In particular, we design a learnable prompt method that learns to dynamically generate prompts from a pool of prompt experts under different inputs. By sharing the same objective with the task, our proposed PLAR can optimize prompts that guide the model's predictions while explicitly learning input-invariant (prompt experts pool) and input-specific (data-dependent) prompt knowledge. We evaluate our approach on datasets consisting of both ground camera videos and aerial videos, and scenes with single-agent and multi-agent actions. In practice, we observe a 3.17-10.2% accuracy improvement on the aerial multi-agent dataset Okutamam and a 1.0-3.6% improvement on the ground camera single-agent dataset Something Something V2. We plan to release our code on the WWW

    GANav: Group-wise Attention Network for Classifying Navigable Regions in Unstructured Outdoor Environments

    Full text link
    We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation. We propose a bottleneck transformer-based deep neural network architecture that uses a novel group-wise attention mechanism to distinguish between navigability levels of different terrains.Our group-wise attention heads enable the network to explicitly focus on the different groups and improve the accuracy. In addition, we propose a dynamic weighted cross entropy loss function to handle the long-tailed nature of the dataset. We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation. We compare our approach with prior work on these datasets and achieve an improvement over the state-of-the-art mIoU by 6.74-39.1% on RUGD and 3.82-10.64% on RELLIS-3D

    iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed Multi-Agent Reinforcement Learning

    Full text link
    Navigating safely and efficiently in dense and heterogeneous traffic scenarios is challenging for autonomous vehicles (AVs) due to their inability to infer the behaviors or intentions of nearby drivers. In this work, we introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios. Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations. We model two distinct incentives for agents' strategies: Behavioral Incentive for high-level decision-making based on their driving behavior or personality and Instant Incentive for motion planning for collision avoidance based on the current traffic state. Our approach enables agents to infer their opponents' behavior incentives and integrate this inferred information into their decision-making and motion-planning processes. We perform experiments on two simulation environments, Non-Cooperative Navigation and Heterogeneous Highway. In Heterogeneous Highway, results show that, compared with centralized training decentralized execution (CTDE) MARL baselines such as QMIX and MAPPO, our method yields a 4.3% and 38.4% higher episodic reward in mild and chaotic traffic, with 48.1% higher success rate and 80.6% longer survival time in chaotic traffic. We also compare with a decentralized training decentralized execution (DTDE) baseline IPPO and demonstrate a higher episodic reward of 12.7% and 6.3% in mild traffic and chaotic traffic, 25.3% higher success rate, and 13.7% longer survival time

    GrASPE: Graph based Multimodal Fusion for Robot Navigation in Unstructured Outdoor Environments

    Full text link
    We present a novel trajectory traversability estimation and planning algorithm for robot navigation in complex outdoor environments. We incorporate multimodal sensory inputs from an RGB camera, 3D LiDAR, and robot's odometry sensor to train a prediction model to estimate candidate trajectories' success probabilities based on partially reliable multi-modal sensor observations. We encode high-dimensional multi-modal sensory inputs to low-dimensional feature vectors using encoder networks and represent them as a connected graph to train an attention-based Graph Neural Network (GNN) model to predict trajectory success probabilities. We further analyze the image and point cloud data separately to quantify sensor reliability to augment the weights of the feature graph representation used in our GNN. During runtime, our model utilizes multi-sensor inputs to predict the success probabilities of the trajectories generated by a local planner to avoid potential collisions and failures. Our algorithm demonstrates robust predictions when one or more sensor modalities are unreliable or unavailable in complex outdoor environments. We evaluate our algorithm's navigation performance using a Spot robot in real-world outdoor environments

    CrossLoc3D: Aerial-Ground Cross-Source 3D Place Recognition

    Full text link
    We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. We will release the code and CS-Campus3D benchmark

    Terrain Classification and Navigability Analysis in Unstructured Outdoor Environments

    No full text
    We present a new learning-based method for identifying safe and navigable regions inoff-road terrains and unstructured environments from RGB images. Our approach consists of classifying groups of terrains based on their navigability levels using coarse-grained semantic segmentation. We propose a transformer-based deep neural network architecture that uses a novel group-wise attention mechanism to distinguish between navigability levels of different terrains. Our group-wise attention heads enable the network to explicitly focus on the different groups and improve the accuracy. We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves visual perception accuracy in off-road terrains for navigation. We compare our approach with prior work on these datasets and achieve an improvement over the state-of-the-art mIoU by 6.74-39.1% on RUGD and 3.82-10.64% on RELLIS-3D. In addition, we deploy our method on a Clearpath Jackal robot. Our approach improves the performance of the navigation algorithm in terms of average progress towards the goal by 54.73% and the false positives in terms of forbidden region by 29.96%
    corecore